
Fig. 21.50 Chart for determining optimal film thickness. (From Ref. 28.) (a) Grooved member
rotating, (b) Smooth member rotating.

6. Calculate

R1 = { AcP0 }112

hr [3T7K - Co0)[I - (K2/*,)2]]

If R1Ih,. > 10,000 (or whatever preassigned radius-to-clearance ratio), a larger bearing or
higher speed is required. Return to step 2. If these changes cannot be made, an externally
pressurized bearing must be used.

7. Having established what ar and Ac should be, obtain values of K00, Q, and T from Figs. 21.62,
21.63, and 21.64, respectively. From Eqs. (21.29), (21.30), and (21.31) calculate Kpt Q, and
Tr.

8. From Fig. 21.65 obtain groove geometry (b, /3a, and H0) and from Fig. 21.66 obtain Rg.

21.3 ELASTOHYDRODYNAMICLUBRICATION
Downson31 defines elastohydrodynamic lubrication (EHL) as "the study of situations in which elastic
deformation of the surrounding solids plays a significant role in the hydrodynamic lubrication pro-
cess." Elastohydrodynamic lubrication implies complete fluid-film lubrication and no asperity inter-
action of the surfaces. There are two distinct forms of elastohydrodynamic lubrication.

1. Hard EHL. Hard EHL relates to materials of high elastic modulus, such as metals. In this
form of lubrication not only are the elastic deformation effects important, but the pressure-viscosity



Fig. 21.51 Chart for determining optimal groove width ratio. (From Ref. 28.) (a) Grooved mem-
ber rotating, (b) Smooth member rotating.

effects are equally as important. Engineering applications in which this form of lubrication is dom-
inant include gears and rolling-element bearings.

2. Soft EHL Soft EHL relates to materials of low elastic modulus, such as rubber. For these
materials that elastic distortions are large, even with light loads. Another feature is the negligible
pressure-viscosity effect on the lubricating film. Engineering applications in which soft EHL is
important include seals, human joints, tires, and a number of lubricated elastomeric material machine
elements.

The recognition and understanding of elastohydrodynamic lubrication presents one of the major
developments in the field of tribology in this century. The revelation of a previously unsuspected
regime of lubrication is clearly an event of importance in tribology. Elastohydrodynamic lubrication
not only explained the remarkable physical action responsible for the effective lubrication of many
machine elements, but it also brought order to the understanding of the complete spectrum of lubri-
cation regimes, ranging from boundary to hydrodynamic.

A way of coming to an understanding of elastohydrodynamic lubrication is to compare it to
hydrodynamic lubrication. The major developments that have led to our present understanding of
hydrodynamic lubrication13 predate the major developments of elastohydrodynamic lubrication32'33



Fig. 21.52 Chart for determining optimal groove length ratio. (From Ref. 28.) (a) Grooved mem-
ber rotating, (b) Smooth member rotating.

by 65 years. Both hydrodynamic and elastohydrodynamic lubrication are considered as fluid-film
lubrication in that the lubricant film is sufficiently thick to prevent the opposing solids from coming
into contact. Fluid-film lubrication is often referred to as the ideal form of lubrication since it provides
low friction and high resistance to wear.

This section highlights some of the important aspects of elastohydrodynamic lubrication while
illustrating its use in a number of applications. It is not intended to be exhaustive but to point out
the significant features of this important regime of lubrication. For more details the reader is referred
to Hamrock and Dowson.10

21.3.1 Contact Stresses and Deformations
As was pointed out in Section 21.1.1, elastohydrodynamic lubrication is the mode of lubrication
normally found in nonconformal contacts such as rolling-element bearings. A load-deflection rela-
tionship for nonconformal contacts is developed in this section. The deformation within the contact
is calculated from, among other things, the ellipticity parameter and the elliptic integrals of the first
and second kinds. Simplified expressions that allow quick calculations of the stresses and deforma-
tions to be made easily from a knowledge of the applied load, the material properties, and the
geometry of the contacting elements are presented in this section.

Elliptical Contacts
The undeformed geometry of contacting solids in a nonconformal contact can be represented by two
ellipsoids. The two solids with different radii of curvature in a pair of principal planes (x and y)



Fig. 21.53 Chart for determining optimal groove angle. (From Ref. 28.) (a) Grooved member
rotating. (D) Smooth member rotating.

passing through the contact between the solids make contact at a single point under the condition of
zero applied load. Such a condition is called point contact and is shown in Fig. 21.67, where the
radii of curvature are denoted by r's. It is assumed that convex surfaces, as shown in Fig. 21.67,
exhibit positive curvature and concave surfaces exhibit negative curvature. Therefore if the center of
curvature lies within the solids, the radius of curvature is positive; if the center of curvature lies
outside the solids, the radius of curvature is negative. It is important to note that if coordinates x and
y are chosen such that

I + -U-U-L (21.33)
T0x rbx ray rby

coordinate x then determines the direction of the semiminor axis of the contact area when a load is
applied and y determines the direction of the semimajor axis. The direction of motion is always
considered to be along the x axis.



Fig. 21.54 Chart for determining maximum radial load capacity. (From Ref. 28.) (a) Grooved
member rotating, (b) Smooth member rotating.

The curvature sum and difference, which are quantities of some importance in the analysis of
contact stresses and deformations, are

i-Hr- "(K- i) <2135>
where

F = f + f *'•*>Kx rax Tbx

5-r + r <21-37)
Ky ray *by

Ry

« = TT (21.38)
Kx

Equations (21.36) and (21.37) effectively redefine the problem of two ellipsoidal solids approaching
one another in terms of an equivalent ellipsoidal solid of radii Rx and Ry approaching a plane.



Fig. 21.55 Chart for determining maximum stability of herringbone-groove bearings.
(From Ref. 29.)

The ellipticity parameter k is defined as the elliptical-contact diameter in the y direction (transverse
direction) divided by the elliptical-contact diameter in the x direction (direction of motion) or k =
DyIDx. If Eq. (21.33) is satisfied and a > 1, the contact ellipse will be oriented so that its major
diameter will be transverse to the direction of motion, and, consequently, k ̂  1. Otherwise, the major
diameter would lie along the direction of motion with both a < 1 and k ^ 1. Figure 21.68 shows
the ellipticity parameter and the elliptic integrals of the first and second kinds for a range of curvature
ratios (a = RyJRx) usually encountered in concentrated contacts.

Simplified Solutions for a > 1. The classical Hertzian solution requires the calculation of the
ellipticity parameter k and the complete elliptic integrals of the first and second kinds y and &. This
entails finding a solution to a transcendental equation relating k, 5, and & to the geometry of the
contacting solids. Possible approaches include an iterative numerical procedure, as described, for
example, by Hamrock and Anderson,35 or the use of charts, as shown by Jones.36 Hamrock and
Brewe34 provide a shortcut to the classical Hertzian solution for the local stress and deformation of
two elastic bodies in contact. The shortcut is accomplished by using simplified forms of the ellipticity
parameter and the complete elliptic integrals, expressing them as functions of the geometry. The
results of Hamrock and Brewe's work34 are summarized here.

A power fit using linear regression by the method of least squares resulted in the following
expression for the ellipticity parameter:

k = a2/\ for a > 1 (21.39)

The asymptotic behavior of & and 5 (a —* 1 implies & —» 5 —* TT/2, and a —> <x> implies S —* °o and



Fig. 21.56 Configuration of rectangular step thrust bearing. (From Ref. 30.)

§ —> 1) was suggestive of the type of functional dependence that & and S might follow. As a result,
an inverse and a logarithmic fit were tried for & and 5, respectively. The following expressions
provided excellent curve fits:

S = I + - for a > 1 (21.40)
a

3 = -^+qlna for a>\ (21.41)

where

9 = f - 1 (21.42)

When the ellipticity parameter k [Eq. (21.39)], the elliptic integrals of the first and second kinds [Eqs.
(21.40) and (21.41)], the normal applied load F, Poisson's ratio v, and the modulus of elasticity E
of the contacting solids are known, we can write the major and minor axes of the contact ellipse and
the maximum deformation at the center of the contact, from the analysis of Hertz,37 as

>.-B?r°.-(sr
17 9 \/ F \T/3• = F [U)UF)J (2i-45)

where [as in Eq. (21.12)]

l\-v\ 1 - vlY1

E' = 2 (——- + —T^ (21.46)
\ ^a ^b I

In these equations Dy and Dx are proportional to F1/3 and 8 is proportional to F2/3.



Fig. 21.57 Chart for determining optimal step parameters. (From Ref. 30.) (a) Maximum dimen-
sionless load, (b) Maximum dimensionless stiffness.

The maximum Hertzian stress at the center of the contact can also be determined by using Eqs.
(21.42) and (21.44)

*-= dfe <21-47>
Simplified Solutions for a < 1. Table 21.7 gives the simplified equations for a < 1 as well as

for a > 1. Recall that a > 1 implies k > 1 and Eq. (21.33) is satisfied, and a < 1 implies k < 1
and Eq. (21.33) is not satisfied. It is important to make the proper evaluation of a, since it has a
great significance in the outcome of the simplified equations.

Figure 21.69 shows three diverse situations in which the simplified equations can be usefully
applied. The locomotive wheel on a rail (Fig. 21.69«) illustrates an example in which the ellipticity
parameter k and the radius ratio a are less than 1. The ball rolling against a flat plate (Fig. 21.69&)
provides pure circular contact (i.e., a = k = 1.0). Figure 21.69c shows how the contact ellipse is
formed in the ball-outer-race contact of a ball bearing. Here the semimajor axis is normal to the
direction of rolling and, consequently, a and k are greater than 1. Table 21.8 shows how the degree
of conformity affects the contact parameters for the various cases illustrated in Fig. 21.69.

Rectangular Contacts
For this situation the contact ellipse discussed in the preceding section is of infinite length in the
transverse direction (Dy —> oo). This type of contact is exemplified by a cylinder loaded against a



Fig. 21.58 Chart for determining dimensionless load capacity and stiffness. (From Ref. 30.)
(a) Maximum dimensionless load capacity, (b) Maximum stiffness.

plate, a groove, or another parallel cylinder or by a roller loaded against an inner or outer ring. In
these situations the contact semiwidth is given by

/8W\1/2

b = Rx — (21.48)
\ TT /

where

W - ̂ - (21.49)

and F' is the load per unit length along the contact.
The maximum deformation due to the approach of centers of two cylinders can be written as12



Fig. 21.59 Configuration of spiral-groove thrust bearing. (From Ref. 20.)

Fig. 21.60 Chart for determining load for spiral-groove thrust bearings. (From Ref. 20.)



Fig. 21.61 Chart for determining groove factor for spiral-groove thrust bearings.
(From Ref. 20.)

2WRx \2 /2r \ / 2^X]s=—-b+in (TT in(if) J <2i-so>
The maximum Hertzian stress in a rectangular contact can be written as

/ w Y / 2

<rM = F — (21.51)
\27T/

21.3.2 Dimensionless Grouping
The variables appearing in elastohydrodynamic lubrication theory are

E' = effective elastic modulus, NVm2

F = normal applied load, N

h = film thickness, m

Rx = effective radius in x (motion) direction, m

Ry = effective radius in y (transverse) direction, m

u = mean surface velocity in x direction, m/sec

£ = pressure-viscosity coefficient of fluid, m2/N

T)0 = atmospheric viscosity, N sec/m2;

From these variables the following five dimensionless groupings can be established.
Dimensionless film thickness

H = |- (21.52)
Rx

Ellipticity parameter

Dy /Ry\
2'"

k = Dx= (I?) (2L53)

Dimensionless load parameter

w = wti (2L54)

Dimensionless speed parameter



Fig. 21.62 Chart for determining stiffness for spiral-groove thrust bearings. (From Ref. 20.)

TJ0Wu- wo, (2L55)

Dimensionless materials parameter

G = ££' (21.56)

The dimensionless minimum film thickness can now be written as a function of the other parameters
involved:

H = /(Jt, U, W, G)

The most important practical aspect of elastohydrodynamic lubrication theory becomes the deter-

Fig. 21.63 Chart for determining flow for spiral-groove thrust bearings. (From Ref. 20.)



Fig. 21.64 Chart for determining torque for spiral-groove thrust bearings. (Curve is for all ra-
dius ratios. From Ref. 20.)

mination of this function / for the case of the minimum film thickness within a conjunction.
Maintaining a fluid-film thickness of adequate magnitude is clearly vital to the efficient operation of
machine elements.

21.3.3 Hard-EHL Results
By using the numerical procedures outlined in Hamrock and Dowson,38 the influence of the ellipticity
parameter and the dimensionless speed, load, and materials parameters on minimum film thickness
was investigated by Hamrock and Dowson.39 The ellipticity parameter k was varied from 1 (a ball-
on-plate configuration) to 8 (a configuration approaching a rectangular contact). The dimensionless
speed parameter U was varied over a range of nearly two orders of magnitude, and the dimensionless
load parameter W over a range of one order of magnitude. Situations equivalent to using materials
of bronze, steel, and silicon nitride and lubricants of paraffinic and naphthenic oils were considered
in the investigation of the role of the dimensionless materials parameter G. Thirty-four cases were
used in generating the minimum-film-thickness formula for hard EHL given here:

#min - 3.63 f/0.68G0.49^-0.073(1 _ g -0.68ft) (21.57)

Fig. 21.65 Chart for determining optimal groove geometry for spiral-groove thrust bearings.
(from Ref. 20.)



Fig. 21.66 Chart for determining groove length fraction for spiral-groove thrust bearings. (From
Ref. 20.)

In this equation the dominant exponent occurs on the speed parameters, while the exponent on the
load parameter is very small and negative. The materials parameter also carries a significant exponent,
although the range of this variable in engineering situations is limited.

In addition to the minimum-film-thickness formula, contour plots of pressure and film thickness
throughout the entire conjunction can be obtained from the numerical results. A representative contour
plot of dimensionless pressure is shown in Fig. 21.70 for k = 1.25, U = 0.168 X 10~u, and G =
4522. In this figure and in Fig. 21.71, the + symbol indicates the center of the Hertzian contact
zone. The dimensionless representation of the X and Y coordinates causes the actual Hertzian contact
ellipse to be a circle regardless of the value of the ellipticity parameter. The Hertzian contact circle
is shown by asterisks. On this figure is a key showing the contour labels and each corresponding
value of dimensionless pressure. The inlet region is to the left and the exit region is to the right. The
pressure gradient at the exit end of the conjunction is much larger than that in the inlet region. In
Fig. 21.70 a pressure spike is visible at the exit of the contact.

Fig. 21.67 Geometry of contacting elastic solids. (From Ref. 10.)



Fig. 21.68 Chart for determining ellipticity parameter and elliptic integrals of first and second
kinds. (From Ref. 34.)

Contour plots of the film thickness are shown in Fig. 21.71 for the same case as Fig. 21.70. In
this figure two minimum regions occur in well-defined lobes that follow, and are close to, the edge
of the Hertzian contact circle. These results contain all of the essential features of available experi-
mental observations based on optical interferometry.40

Table 21.7 Simplified Equations (From Ref. 6)

_a > 1
JE = Oi21^

S = — + q In a

where q = — — 1

I = I + -

= 2 (WffY'3
V "£' /

where R~l = R^1 + R~l

(6&FR\l/3

D* = 2(-^F)
T/4.5V F Vl1'3

8^[U)Uv J

_a < 1
*= «2/-

5 = ̂  + q In a

where q = — - 1

.1 = 1 + qa

= 2 /6^KV'3
V TrE' I

where R~l = R^ + R~l

/6&FR\113

D' = 2fe)
r/4.5\/ F VT'35 = * [(«J(^j J



Fig. 21.69 Three degrees of conformity. (From Ref. 34.) (a) Wheel on rail. (6) Ball on plane.
(c) Ball-outer-race contact.



Table 21.8 Practical Applications for Differing Conformities3 (From Ref. 34)

Contact Wheel on Rail Ball on Plane Ball-Outer-Race
Parameters Contact

F 1.00 x 105 N 222.4111 N 222.4111 N
rax 50.1900 cm 0.6350 cm 0.6350 cm
ray oo 0.6350 cm 0.6350 cm
rbx oo oo -3.8900 cm
rby 30.0000 cm oo -0.6600 cm
u 0.5977 1.0000 22.0905
k 0.7206 1.0000 7.1738
& 1.3412 1.5708 1.0258
5 1.8645 1.5708 3.3375
Dy 1.0807 cm 0.0426 cm 0.1810 cm
Dx 1.4991 cm 0.0426cm 0.0252cm
8 0.0108 cm 7.13 x 10~4 cm 3.57 x 10~4 cm
C7max I 1.1784 X IQ5 N/cm2 [ 2.34 X IQ5 N/cm2 | 9.30 X IQ4 N/cm2

aE' = 2.197 X 107 N/cm2.

21.3.4 Soft-EHL Results
In a similar manner, Hamrock and Dowson41 investigated the behavior of soft-EHL contacts. The
ellipticity parameter was varied from 1 (a circular configuration) to 12 (a configuration approaching
a rectangular contact), while U and W were varied by one order of magnitude and there were two
different dimensionless materials parameters. Seventeen cases were considered in obtaining the di-
mensionless minimum-film-thickness equation for soft EHL:

H^n = 7.43t/°-65W-°-21(l - 0.85e-°-31*) (21.58)

The powers of U in Eqs. (21.57) and (21.58) are quite similar, but the power of W is much more

Fig. 21.70 Contour plot of dimensionless pressure, k = 1.25; U = 0.168 x 10~11;
W = 0.111 x 10~6; G = 4522. (From Ref. 39.)



Fig. 21.71 Contour plot of dimensionless film thickness, k = 1.25; U = 0.168 x 10~11;
W = 0.111 x 10~6; G = 4522. (From Ref. 39.)

significant for soft-EHL results. The expression showing the effect of the ellipticity parameter is of
exponential form in both equations, but with quite different constants.

A major difference between Eqs. (21.57) and (21.58) is the absence of the materials parameter
in the expression for soft EHL. There are two reasons for this: one is the negligible effect of the
relatively low pressures on the viscosity of the lubricating fluid, and the other is the way in which
the role of elasticity is automatically incorporated into the prediction of conjunction behavior through
the parameters U and W. Apparently the chief effect of elasticity is to allow the Hertzian contact
zone to grow in response to increases in load.

21.3.5 Film Thickness for Different Regimes of Fluid-Film Lubrication
The types of lubrication that exist within nonconformal contacts like that shown in Fig. 21.70 are
influenced by two major physical effects: the elastic deformation of the solids under an applied load
and the increase in fluid viscosity with pressure. Therefore, it is possible to have four regimes of
fluid-film lubrication, depending on the magnitude of these effects and on their relative importance.
In this section because of the need to represent the four fluid-film lubrication regimes graphically,
the dimensionless grouping presented in Section 21.3.2 will need to be recast. That is, the set of
dimensionless parameters given in Section 21.3.2 [H, U, W, G, and k}—will be reduced by one
parameter without any loss of generality. Thus the dimensionless groupings to be used here are:

Dimensionless film parameter

/w\2

H = H[^jJ (21.59)

Dimensionless viscosity parameter

*.-?£ (21.60)

Dimensionless elasticity parameter
TI/-8/3

g. = -jjT (21-61)



The ellipticity parameter remains as discussed in Section 21.3.1, Eq. (21.39). Therefore the reduced
dimensionless group is {fi, gv, ge, k}.

Isoviscous-Rigid Regime
In this regime the magnitude of the elastic deformation of the surfaces is such an insignificant part
of the thickness of the fluid film separating them that it can be neglected, and the maximum pressure
in the contact is too low to increase fluid viscosity significantly. This form of lubrication is typically
encountered in circular-arc thrust bearing pads; in industrial processes in which paint, emulsion, or
protective coatings are applied to sheet or film materials passing between rollers; and in very lightly
loaded rolling bearings.

The influence of conjunction geometry on the isothermal hydrodynamic film separating two rigid
solids was investigated by Brewe et al.42 The effect of geometry on the film thickness was determined
by varying the radius ratio RyIRx from 1 (circular configuration) to 36 (a configuration approaching
a rectangular contact). The film thickness was varied over two orders of magnitude for conditions
representative of steel solids separated by a paraffinic mineral oil. It was found that the computed
minimum film thickness had the same speed, viscosity, and load dependence as the classical Kapitza
solution,43 so that the new dimensionless film thickness H is constant. However, when the Reynolds
cavitation condition (dp/dn = O and /7 = 0) was introduced at the cavitation boundary, where n
represents the coordinate normal to the interface between the full film and the cavitation region, an
additional geometrical effect emerged. According to Brewe et al.,42 the dimensionless minimum-film-
thickness parameter for the isoviscous-rigid regime should now be written as

(#min)ir - 128aA2 [o.!31 tan-1 Q + !.683] (21.62)

where

D

a = -Z~ (kY'2 (21.63)
Rx

and

A6 = (l + £) ' (21.64)

In Eq. (21.62) the dimensionless film thickness parameter H is shown to be strictly a function only
of the geometry of the contact described by the ratio a = Ry/Rx.

Piezoviscous-Rigid Regime
If the pressure within the contact is sufficiently high to increase the fluid viscosity within the con-
junction significantly, it may be necessary to consider the pressure-viscosity characteristics of the
lubricant while assuming that the solids remain rigid. For the latter part of this assumption to be
valid, it is necessary that the deformation of the surfaces remain an insignificant part of the fluid-
film thickness. This form of lubrication may be encountered on roller end-guide flanges, in contacts
in moderately loaded cylindrical tapered rollers, and between some piston rings and cylinder liners.

From Hamrock and Dowson44 the minimum-film-thickness parameter for the piezoviscous-rigid
regime can be written as

(#min)pvr = 1-66 ̂ '3 (1 - ^0'68*) (21.65)

Note the absence of the dimensionless elasticity parameter ge from Eq. (21.65).

Isoviscous-Elastic (Soft-EHL) Regime

In this regime the elastic deformation of the solids is a significant part of the thickness of the fluid
film separating them, but the pressure within the contact is quite low and insufficient to cause any
substantial increase in viscosity. This situation arises with materials of low elastic modulus (such as
rubber), and it is a form of lubrication that may be encountered in seals, human joints, tires, and
elastomeric material machine elements.

If the film thickness equation for soft EHL [Eq. (21.58)] is rewritten in terms of the reduced
dimensionless grouping, the minimum-film-thickness parameter for the isoviscous-elastic regime can
be written as

(#min)ie = 8.70 &« (1 - 0.85e -0-31*) (21.66)

Note the absence of the dimensionless viscosity parameter gv from Eq. (21.66).



Piezoviscous-Elastic (Hard-EHL) Regime
In fully developed elastohydrodynamic lubrication the elastic deformation of the solids is often a
significant part of the thickness of the fluid film separating them, and the pressure within the contact
is high enough to cause a significant increase in the viscosity of the lubricant. This form of lubrication
is typically encountered in ball and roller bearings, gears, and cams.

Once the film thickness equation [Eq. (21.57)] has been rewritten in terms of the reduced dimen-
sionless grouping, the minimum film parameter for the piezoviscous-elastic regime can be written as

tfmJpv. = 3.42 &»£" (1 - *-°-68*) (21.67)

An interesting observation to make in comparing Eqs. (21.65) through (21.67) is that in each
case the sum of the exponents on gv and ge is close to the value of 2A required for complete dimen-
sional representation of these three lubrication regimes: piezoviscous-rigid, isoviscous-elastic, and
piezoviscous-elastic.

Contour Plots
Having expressed the dimensionless minimum-film-thickness parameter for the four fluid-film re-
gimes in Eqs. (21.62) to (21.67), Hamrock and Dowson44 used these relationships to develop a map
of the lubrication regimes in the form of dimensionless minimum-film-thickness parameter contours.
Some of these maps are shown in Figs. 21.72-21.74 on a log-log grid of the dimensionless viscosity
and elasticity parameters for ellipticity parameters of 1, 3, and 6, respectively. The procedure used
to obtain these figures can be found in Ref. 44. The four lubrication regimes are clearly shown in
Figs. 21.72-21.74. By using these figures for given values of the parameters fc, gv, and ge, the fluid-
film lubrication regime in which any elliptical conjunction is operating can be ascertained and the
approximate value of #min can be determined. When the lubrication regime is known, a more accurate
value of /?min can be obtained by using the appropriate dimensionless minimum-film-thickness equa-
tion. These results are particularly useful in initial investigations of many practical lubrication prob-
lems involving elliptical conjunctions.

Fig. 21.72 Map of lubrication regimes for ellipticity parameter k of 1. (From Ref. 44.)



Fig. 21.73 Map of lubrication regimes for ellipticity parameter k of 3. (From Ref. 44.)

21.3.6 Rolling-Element Bearings
Rolling-element bearings are precision, yet simple, machine elements of great utility, whose mode
of lubrication is elastohydrodynamic. This section describes the types of rolling-element bearings and
their geometry, kinematics, load distribution, and fatigue life, and demonstrates how elastohydro-
dynamic lubrication theory can be applied to the operation of rolling-element bearings. This section
makes extensive use of the work by Hamrock and Dowson10 and by Hamrock and Anderson.6

Bearing Types
A great variety of both design and size range of ball and roller bearings is available to the designer.
The intent of this section is not to duplicate the complete descriptions given in manufacturers' cat-
alogs, but rather to present a guide a representative bearing types along with the approximate range
of sizes available. Tables 21.9-21.17 illustrate some of the more widely used bearing types. In
addition, there are numerous types of specialty bearings available for which space does not permit a
complete cataloging. Size ranges are given in metric units. Traditionally, most rolling-element bear-
ings have been manufactured to metric dimensions, predating the efforts toward a metric standard.
In addition to bearing types and approximate size ranges available, Tables 21.9-21.17 also list ap-
proximate relative load-carrying capabilities, both radial and thrust, and, where relevant, approximate
tolerances to misalignment.

Rolling bearings are an assembly of several parts-an inner race, an outer race, a set of balls or
rollers, and a cage or separator. The cage or separator maintains even spacing of the rolling elements.
A cageless bearing, in which the annulus is packed with the maximum rolling-element complement,
is called a full-complement bearing. Full-complement bearings have high load capacity but lower
speed limits than bearings equipped with cages. Tapered-roller bearings are an assembly of a cup, a
cone, a set of tapered rollers, and a cage.

Ball Bearings. Ball bearings are used in greater quantity than any other type of rolling bearing.
For an application where the load is primarily radial with some thrust load present, one of the types
in Table 21.9 can be chosen. A Conrad, or deep-groove, bearing has a ball complement limited by



Fig. 21.74 Map of lubrication regimes for ellipticity parameter k of 6. (From Ref. 44.)

the number of balls that can be packed into the annulus between the inner and outer races with the
inner race resting against the inside diameter of the outer race. A stamped and riveted two-piece
cage, piloted on the ball set, or a machined two-piece cage, ball piloted or race piloted, is almost
always used in a Conrad bearing. The only exception is a one-piece cage with open-sided pockets
that is snapped into place. A filling-notch bearing has both inner and outer races notched so that a
ball complement limited only by the annular space between the races can be used. It has low thrust
capacity because of the filling notch.

The self-aligning internal bearing shown in Table 21.9 has an outer-race ball path ground in a
spherical shape so that it can accept high levels of misalignment. The self-aligning external bearing
has a multipiece outer race with a spherical interface. It too can accept high misalignment and has
higher capacity than the self-aligning internal bearing. However, the external self-aligning bearing is
somewhat less self-aligning than its internal counterpart because of friction in the multipiece outer
race.

Representative angular-contact ball bearings are illustrated in Table 21.10. An angular-contact ball
bearing has a two-shouldered ball groove in one race and a single-shouldered ball groove in the other
race. Thus it is capable of supporting only a unidirectional thrust load. The cutaway shoulder allows
assembly of the bearing by snapping over the ball set after it is positioned in the cage and outer
race. This also permits use of a one-piece, machined, race-piloted cage that can be balanced for high-
speed operation. Typical contact angles vary from 15° to 25°.

Angular-contact ball bearings are used in duplex pairs mounted either back to back or face to
face as shown in Table 21.10. Duplex bearing pairs are manufactured so that they "preload" each
other when clamped together in the housing and on the shaft. The use of preloading provides stiffer
shaft support and helps prevent bearing skidding at light loads. Proper levels of preload can be
obtained from the manufacturer. A duplex pair can support bidirectional thrust load. The back-to-
back arrangement offers more resistance to moment or overturning loads than does the face-to-face
arrangement.

Where thrust loads exceed the capability of a simple bearing, two bearings can be used in tandem,
with both bearings supporting part of the thrust load. Three or more bearings are occasionally used



Table 21.9 Characteristics of Representative Radial Ball Bearings (From Ref. 10)
Approximate Range .
of Bore Sizes, mm Relative Capacity L'mmr\g T .- — Speed Tolerance to

Type Minimum Maximum Radial Thrust Factor Misalignment

in tandem, but this is discouraged because of the difficulty in achieving good load sharing. Even
slight differences in operating temperature will cause a maldistribution of load sharing.

The split-ring bearing shown in Table 21.10 offers several advantages. The split ring (usually the
inner) has its ball groove ground as a circular arc with a shim between the ring halves. The shim is
then removed when the bearing is assembled so that the split-ring ball groove has the shape of a
gothic arch. This reduces the axial play for a given radial play and results in more accurate axial
positioning of the shaft. The bearing can support bidirectional thrust loads but must not be operated
for prolonged periods of time at predominantly radial loads. This results in three-point ball-race
contact and relatively high frictional losses. As with the conventional angular-contact bearing, a one-
piece precision-machined cage is used.

Ball thrust bearings (90° contact angle), Table 21.11, are used almost exclusively for machinery
with vertical oriented shafts. The flat-race bearing allows eccentricity of the fixed and rotating mem-
bers. An additional bearing must be used for radial positioning. It has low load capacity because of
the very small ball-race contacts and consequent high Hertzian stress. Grooved-race bearings have
higher load capacities and are capable of supporting low-magnitude radial loads. All of the pure
thrust ball bearings have modest speed capability because of the 90° contact angle and the consequent
high level of ball spinning and frictional losses.

Roller Bearings. Cylindrical roller bearings, Table 21.12, provide purely radial load support in
most applications. An N or U type of bearing will allow free axial movement of the shaft relative to
the housing to accommodate differences in thermal growth. An F or J type of bearing will support
a light thrust load in one direction; and a T type of bearing will support a light bidirectional thrust
load.

Conrad or deep
groove

Maximum capacity
or filling notch

Magneto or
counterbored
outer

Airframe or
aircraft control

Self-aligning,
internal

Self-aligning,
external

Double row,
maximum

Double row, deep
groove

aTwo directions.
"One direction.

3 1060 1.00 «0.7 1.0 ±0°15'

10 130 1.2-1.4 «0.2 1.0 ±0°3'

3 200 0.9-1.3 "0.5-0.9 1.0 ±0°5'

4.826 31.75 High static "0.5 0.2 0°
capacity

5 120 0.7 "0.2 1.0 ±2°30'

— — 1.0 "0.7 1.0 High

6 110 1.5 "0.2 1.0 ±0°3'

6 110 1.5 «1.4 1.0 0°



Table 21.10 Characteristics of Representative Angular-Contact Ball Bearings
(From Ref. 10)

Approximate Range .
of Bore Sizes, mm Relative Capacity L'mit'n9: —— Speed Tolerance to

Type Minimum Maximum Radial Thrust Factor Misalignment
One-directional

thrust

Duplex, back to
back

Duplex, face to
face

Duplex, tandem

Two-directional or
split ring

Double row

Double row,
maximum

10 320 H.00-1.15 "'M.5-2.3 H.l-3.0 ±0°2'

10 320 1.85 C1.5 3.0 0°

10 320 1.85 C1.5 3.0 0°

10 320 1.85 «2.4 3.0 0°

10 110 1.15 C1.5 3.0 ±0°2'

10 140 1.5 C1.85 0.8 0°

10 110 1.65 «0.5 0.7 0°
"1.5

"One direction.
^Depends on contact angle.
cTwo directions.
^In other direction.

Table 21.11 Characteristics of Representative Thrust Ball Bearings (From Ref. 10)
Approximate Range Relative .
of Bore Sizes, mm Capacity Limiting! L- 1— Speed Tolerance to

Type Minimum Maximum Radial Thrust Factor Misalignment
One directional,

flat race

One directional,
grooved race

Two directional,
grooved race

6.45 88.9 O "0.7 0.10 *0°

6.45 1180 O «1.5 0.30 0°

15 220 O C1.5 0.30 0°

aOne direction.
fo Accepts eccentricity.
0TwO directions.



"One direction.
bTwo directions.

Cylindrical roller bearings have moderately high radial load capacity as well as high-speed ca-
pability. Their speed capability exceeds that of either spherical or tapered-roller bearings. A com-
monly used bearing combination for support of a high-speed rotor is an angular-contact ball bearing
or duplex pair and a cylindrical roller bearing.

As explained in the following section on bearing geometry, the rollers in cylindrical roller bearings
are seldom pure cylinders. They are crowned or made slightly barrel shaped to relieve stress con-
centrations of the roller ends when any misalignment of the shaft and housing is present.

Cylindrical roller bearings may be equipped with one- or two-piece cages, usually race piloted.
For greater load capacity, full-complement bearings can be used, but at a significant sacrifice in speed
capability.

Table 21.12 Characteristics of Representative Cylindrical Roller Bearings (From Ref. 10)
Approximate Range . ..
of Bore Sizes, mm Relative Capacity L^ To|eranceto

Type Minimum Maximum Radial Thrust Factor Misalignment
Separable outer

ring,
nonlocating
(RN, RIN)

Separable inner
ring,
nonlocating
(RU, RIU)

Separable outer
ring, one-
direction
locating (RF,
RIF)

Separable inner
ring, one-
direction
locating (RJ,
RIJ)

Self-contained,
two-direction
locating

Separable inner
ring, two-
direction
locating (RT,
RIT)

Nonlocating, full
complement
(RK, RIK)

Double row,
separable
outer ring,
nonlocating
(RD)

Double row,
separable
inner ring,
nonlocating

10 320 1.55 O 1.20 ±0°5'

12 500 1.55 O 1.20 ±0°5'

40 177.8 1.55 "Locating 1.15 ±0°5'

12 320 1.55 "Locating 1.15 ±0°5'

12 100 1.35 ^Locating 1.15 ±0°5'

20 320 1.55 ^Locating 1.15 ±0°5'

17 75 2.10 O 0.20 ±0°5'

30 1060 1.85 O 1.00 0°

70 1060 1.85 O 1.00 0°



"Symmetric rollers.
bAsymmetric rollers.

Spherical roller bearings, Tables 21.13-21.15, are made as either single- or double-row bearings.
The more popular bearing design uses barrel-shaped rollers. An alternative design employs hourglass-
shaped rollers. Spherical roller bearings combine very high radial load capacity with modest thrust
load capacity (with the exception of the thrust type) and excellent tolerance to misalignment. They
find widespread use in heavy-duty rolling mill and industrial gear drives, where all of these bearing
characteristics are requisite.

Tapered-roller bearings, Table 21.16, are also made as single- or double-row bearings with com-
binations of one- or two-piece cups and cones. A four-row bearing assembly with two- or three-piece
cups and cones is also available. Bearings are made with either a standard angle for applications in
which moderate thrust loads are present or with a steep angle for high thrust capacity. Standard and
special cages are available to suit the application requirements.

Single-row tapered-roller bearings must be used in pairs because a radially loaded bearing gen-
erates a thrust reaction that must be taken by a second bearing. Tapered-roller bearings are normally
set up with spacers designed so that they operate with some internal play. Manufacturers' engineering
journals should be consulted for proper setup procedures.

Needle roller bearings, Table 21.17, are characterized by compactness in the radial direction and
are frequently used without an inner race. In the latter case the shaft is hardened and ground to serve

Table 21.14 Characteristics of Standardized Double-Row, Spherical Roller Bearings
(From Ref. 10)

Table 21.13 Characteristics of Representative Spherical Roller Bearings (From Ref. 10)
Approximate Range Relative . ..
of Bore Sizes, mm Capacity "Jj* To|eranceto

Type Minimum Maximum Radial Thrust Factor Misalignment
Single row,

barrel or
convex

Double row,
barrel or
convex

Thrust

Double row,
concave

20

25

85

50

320

1250

360

130

2.10

2.40

ao.iofoo.io

2.40

0.20

0.70

«1.80
*2.40

0.70

0.50

0.50

0.35-0.50

0.50

±2°

± 1°30'

±3°

±1°30'

Type
SLB

SC

SD

Roller Design

Symmetric

Symmetric

Asymmetric

Retainer Design

Machined,
roller piloted

Stamped, race
piloted

Machined, race
piloted

Roller Guidance

Retainer pockets

Floating guide
ring

Inner-ring
center rib

Roller-race
Contact

Modified line,
both races

Modified line,
both races

Line contact,
outer; point
contact,
inner



Table 21.15 Characteristics of Spherical Roller Bearings (From Ref. 10)
Approximate

Approximate Range of Relative .
Bore Sizes, mm Capacity3 Limiting

— opeeo
Series Types Minimum Maximum Radial Thrust Factor
202 Single-row barrel 20 320 1.0 0.11 0.5
203 Single-row barrel 20 240 1.7 .18 .5
204 Single-row barrel 25 110 2.1 .22 .4
212 SLB 35 75 1.0 .26 .6
213 SLB 30 70 1.7 .53 I
22, 22K SLB, SC, SD 30 320 1.7 .46
23, 23K SLB, SC, SD 40 280 2.7 1.0 *
30, 3OK SLB, SC, SD 120 1250 1.2 .29 .7
31, 31K SLB, SC, SD 110 1250 1.7 .54 .6
32, 32K SLB, SC, SD 100 850 2.1 .78 .6
39, 39K SD 120 1250 .7 .18 .7
40, 4OK SD 180 250 1.5 — .7
aLoad capacities are comparative within the various series of spherical roller bearings only. For a
given envelope size, a spherical roller bearing has a radial capacity approximately equal to that of a
cylindrical roller bearing.

as the inner race. Drawn cups, both open and closed end, are frequently used for grease retention.
Drawn cups are thin walled and require substantial support from the housing. Heavy-duty roller
bearings have relatively rigid races and are more akin to cylindrical roller bearings with long-length-
to-diameter-ratio rollers.

Needle roller bearings are more speed limited than cylindrical roller bearings because of roller
skewing at high speeds. A high percentage of needle roller bearings are full-complement bearings.
Relative to a caged needle bearing, these have higher load capacity but lower speed capability.

There are many types of specialty bearings available other than those discussed here. Aircraft
bearings for control systems, thin-section bearings, and fractured-ring bearings are some of the more
widely used bearings among the many types manufactured. A complete coverage of all bearing types
is beyond the scope of this chapter.

Angular-contact ball bearings and cylindrical roller bearings are generally considered to have the
highest speed capabilities. Speed limits of roller bearings are discussed in conjunction with lubrication
methods. The lubrication system employed has as great an influence on limiting bearing speed as
does the bearing design.

Geometry
The operating characteristics of a rolling-element bearing depend greatly on the diametral clearance
of the bearing. This clearance varies for the different types of bearings discussed in the preceding
section. In this section, the principal geometrical relationships governing the operation of unloaded
rolling-element bearings are developed. This information will be of vital interest when such quantities
as stress, deflection, load capacity, and life are considered in subsequent sections. Although bearings
rarely operate in the unloaded state, an understanding of this section is vital to the appreciation of
the remaining sections.

Geometry of Ball Bearings
Pitch Diameter and Clearance. The cross section through a radial, single-row ball bearing shown

in Fig. 21.75 depicts the radial clearance and various diameters. The pitch diameter de is the mean
of the inner- and outer-race contact diameters and is given by

de = d{ + l/2(d0 - 4) or de = l/i(d0 + dt) (21.68)

Also from Fig. 21.75, the diametral clearance denoted by Pd can be written as

Pd = d0 - dt - Id (21.69)

Diametral clearance may therefore be thought of as the maximum distance that one race can move
diametrally with respect to the other when no measurable force is applied and both races lie in the



same plane. Although diametral clearance is generally used in connection with single-row radial
bearings, Eq. (21.69) is also applicable to angular-contact bearings.

Race Conformity. Race conformity is a measure of the geometrical conformity of the race and
the ball in a plane passing through the bearing axis, which is a line passing through the center of
the bearing perpendicular to its plane and transverse to the race. Figure 21.76 is a cross section of a
ball bearing showing race conformity, expressed as

f =T- (21.70)

For perfect conformity, where the radius of the race is equal to the ball radius, / is equal to l/2. The
closer the race conforms to the ball, the greater the frictional heat within the contact. On the other
hand, open-race curvature and reduced geometrical conformity, which reduce friction, also increase
the maximum contact stresses and, consequently, reduce the bearing fatigue life. For this reason,
most ball bearings made today have race conformity ratios in the range 0.51 < / < 0.54, with / =
0.52 being the most common value. The race conformity ratio for the outer race is usually made
slightly larger than that for the inner race to compensate for the closer conformity in the plane of
the bearing between the outer race and ball than between the inner race and ball. This tends to
equalize the contact stresses at the inner- and outer-race contacts. The difference in race conformities
does not normally exceed 0.02.

Contact Angle. Radial bearings have some axial play since they are generally designed to have
a diametral clearance, as shown in Fig. 21.77. This implies a free-contact angle different from zero.
Angular-contact bearings are specifically designed to operate under thrust loads. The clearance built

Table 21.16 Characteristics of Representative Tapered Roller Bearings (From Ref. 10)

Single row (TS)

Two row, double
cone, single
cups (TDI)

Two row, double
cup, single
cones,
adjustable
(TDO)

Two row, double
cup, single
cones,
nonadjustabe
(TNA)

Four row, cup
adjusted
(TQO)

Four row cup
adjusted
(TQI)

Type Subtype

TST- Tapered bore
TSS- Steep angle
TS- Pin cage
TSE, TSK- keyway cones
TSF, TSSF— flanged cup
TSG — steering gear (without

cone)
TDIK, TDIT,

TDITP— tapered bore
TDIE, TDIKE— slotted

double cone
TDIS— steep angle
TDO
TDOS— steep angle

TNA
TNASW— slotted cones
TNASWE— extended cone

rib
TNASWH— slotted cones,

sealed
TNADA, TNHDADX— self-

aligning cup AD

TQO, TQOT- tapered bore

TQIT— tapered bore

Approximate Range
of Bore Sizes, mm

Minimum Maximum

8 1690
24 430
16 1270

12 380
8 1070

30 1200
30 860
24 690
55 520

8 1830
20 1430

20 60
30 260
20 305

8 70

70 1500
250 1500



into the unloaded bearing, along with the race conformity ratio, determines the bearing free-contact
angle. Figure 21.77 shows a radial bearing with contact due to the axial shift of the inner and outer
races when no measurable force is applied.

Before the free-contact angle is discussed, it is important to define the distance between the centers
of curvature of the two races in line with the center of the ball in both Figs. 21.77'a and 21.lib. This
distance—denoted by x in Fig. 21.11 a and by D in Fig. 21.lib—depends on race radius and ball
diameter. Denoting quantities referred to the inner and outer races by subscripts i and o, respectively,
we see from Figs. 21.11 a and 21.776 that

Fig. 21.75 Cross section through radial, single-row ball bearing. (From Ref. 10.)

Table 21.17 Characteristics of Representative Needle Roller Bearings (From Ref. 10)

Drawn
cup,
needle

Drawn
cup,
needle,
grease
retained

Drawn
cup,
roller

Heavy-duty
roller

Caged
roller

Cam
follower

Needle
thrust

Type

Open end Closed end

Open end Closed end

Bore Sizes, mm

Minimum Maximum

3 185

4 25

5 70

16 235

12 100

12 150

6 105

Relative Load
Capacity

Dynamic Static

High Moderate

High Moderate

Moderate Moderate

Very Moderate
high

Very High
high

Moderate Moderate
to high to high

Very Very
high high

Limiting
Speed
Factor

0.3

0.3

0.9

1.0

1.0

0.3-0.9

0.7

Misalignment
Tolerance

Low

Low

Moderate

Moderate

Moderate

Low

Low



Fig. 21.76 Cross section of ball and outer race, showing race conformity. (From Ref. 10.)

*± + d + !f = ra-x + ri4 4

or

jc = r0 + rz — d ——

and

d = r0-D + rt

or

D = r0 + rt-d (21.71)

From these equations, we can write

,-*-*

This distance, shown in Fig. 21.77, will be useful in defining the contact angle.
By using Eq. (21.70), we can write Eq. (21.71) as

D = Bd (21.72)

where

B = f0 + ft ~ 1 (21.73)

The quantity B in Eq. (21.72) is known as the total conformity ratio and is a measure of the combined

Fig. 21.77 Cross section of radial ball bearing, showing ball-race contact due to axial shift of
inner and outer rings. (From Ref. 10.) (a) Initial position, (b) Shifted position.



conformity of both the outer and inner races to the ball. Calculations of bearing deflection in later
sections depend on the quantity B.

The free-contact angle pf (Fig. 21.77) is defined as the angle made by a line through the points
of contact of the ball and both races with a plane perpendicular to the bearing axis of rotation when
no measurable force is applied. Note that the centers of curvature of both the outer and inner races
lie on the line defining the free-contact angle. From Fig. 21.77, the expression for the free-contact
angle can be written as

D - Pd/2
cos Pf = jf— (21.74)

By using Eqs. (21.69) and (21.71), we can write Eq. (21.74) as

\r0 + r, - l/2(d0 - 4)1
ft = a"'1 [ r. + r <- , J (21-75)

Equation (21.75) shows that if the size of the balls is increased and everything else remains constant,
the free-contact angle is decreased. Similarly, if the ball size is decreased, the free-contact angle is
increased.

From Eq. (21.74) the diametral clearance Pd can be written as

Pd = 2D(I - cos pf) (21.76)

This is an alternative definition of the diametral clearance given in Eq. (21.69).
Endplay. Free endplay Pe is the maximum axial movement of the inner race with respect to the

outer race when both races are coaxially centered and no measurable force is applied. Free endplay
depends on total curvature and contact angle, as shown in Fig. 21.77, and can be written as

Pe = 2D sin pf (21.77)

The variation of free-contact angle and free endplay with the ratio Pdl2d is shown in Fig. 21.78 for

Fig. 21.78 Chart for determining free-contact angle and endplay. (From Ref. 10.)



Fig. 21.79 Shoulder height in ball bearing. (From Ref. 10.)

four values of total conformity normally found in single-row ball bearings. Eliminating pf in Eqs.
(21.76) and (21.77) enables the establishment of the following relationships between free endplay
and diametral clearance:

Pd = 2D - [(2D)2 - P*]m

P6 = (4DPd - PJ)1'2

Shoulder Height. The shoulder height of ball bearings is illustrated in Fig. 21.79. Shoulder
height, or race depth, is the depth of the race groove measured from the shoulder to the bottom of
the groove and is denoted by s in Fig. 21.79. From this figure the equation defining the shoulder
height can be written as

s = r(\ - cos O) (21.78)

The maximum possible diametral clearance for complete retention of the ball-race contact within
the race under zero thrust load is given by

civu. - ̂
Curvature Sum and Difference. A cross section of a ball bearing operating at a contact angle /3

is shown in Fig. 21.80. Equivalent radii of curvature for both inner- and outer-race contacts in, and
normal to, the direction of rolling can be calculated from this figure. The radii of curvature for the
ball-inner-race contact are

'„ = ray = \ (21.79)

dc — d cos 3

"• = ̂ cT/ (2L80)

rby = -ftd = -r, (21.81)

The radii of curvature for the ball-outer-race contact are

Fig. 21.80 Cross section of ball bearing. (From Ref. 10.)



'«« = ̂  = f (21-82>

<t + d cos fi

^ = -T^TF- (203)

r* = -W = ~r0 (21.84)

In Eqs. (21.80) and (21.81), (3 is used instead of (3f since these equations are also valid when a load
is applied to the contact. By setting J3 = 0°, Eqs. (21.79)-(21.84) are equally valid for radial ball
bearings. For thrust ball bearings, rbx = °° and the other radii are defined as given in the preceding
equations.

Equations (21.36) and (21.37) effectively redefine the problem of two ellipsoidal solids approach-
ing one another in terms of an equivalent ellipsoidal solid of radii Rx and Ry approaching a plane.
From the radius-of-curvature expressions, the radii Rx and Ry for the contact example discussed earlier
can be written for the ball-inner-race contact as

d(de - d cos /3)
Rx = 2d (21.85)

Ry = ̂ j (21.86)

and for the ball-outer-race contact as

d(d. + d cos /3)
R* = 2d (21'87)

Ry = 2JT5TT <2L88>

Roller Bearings. The equations developed for the pitch diameter de and diametral clearance Pd
for ball bearings in Eqs. (21.68) and (21.69), respectively, are directly applicable for roller bearings.

Crowning. To prevent high stresses at the edges of the rollers in cylindrical roller bearings, the
rollers are usually crowned as shown in Fig. 21.81. A fully crowned roller is shown in Fig. 21.810
and a partially crowned roller in Fig. 21.81ft. In this figure the crown curvature is greatly exaggerated
for clarity. The crowning of rollers also gives the bearing protection against the effects of slight
misalignment. For cylindrical rollers, r^ld « 102. In contrast, for spherical rollers in spherical roller
bearings, as shown in Fig. 21.81, rayld ~ 4. In Fig. 21.81 it is observed that the roller effective
length lr is the length presumed to be in contact with the races under loading. Generally, the roller
effective length can be written as

Ir=I,- 2rc

where rc is the roller corner radius or the grinding undercut, whichever is larger.

Fig. 21.81 Spherical and cylindrical rollers. (From Ref. 6.) (a) Spherical roller (fully crowned), (b)
Cylindrical roller (partially crowned).



Race Conformity. Race conformity applies to roller bearings much as it applies to ball bearings.
It is a measure of the geometrical conformity of the race and the roller. Figure 21.82 shows a cross
section of a spherical roller bearing. From this figure the race conformity can be written as

'-£

In this equation if subscripts / or o are added to / and r, we obtain the values for the race conformity
for the inner- and outer-race contacts.

Free Endplay and Contact Angle. Cylindrical roller bearings have a contact angle of zero and
may take thrust load only by virtue of axial flanges. Tapered-roller bearings must be subjected to a
thrust load or the inner and outer races (the cone and cup) will not remain assembled; therefore,
tapered-roller bearings do not exhibit free diametral play. Radial spherical roller bearings are, how-
ever, normally assembled with free diametral play and, hence, exhibit free endplay. The diametral
play Pd for a spherical roller bearing is the same as that obtained for ball bearings as expressed in
Eq. (21.69). This diametral play as well as endplay is shown in Fig. 21.83 for a spherical roller
bearing. From this figure we can write that

/ p\
T0COS ft= I r 0 - y J COS y

or

j8 = cos'1 f 1 - ^J cos y

Also from Fig. 21.83 the free endplay can be written as

Pc = 2r0(sin /3 - sin y) + Pd sin y

Fig. 21.82 Spherical roller bearing geometry. (From Ref. 6.)



Fig. 21.83 Schematic diagram of spherical roller bearing, showing diametral play and endplay.
(From Ref. 6.)

Curvature Sum and Difference. The same procedure will be used for defining the curvature sum
and difference for roller bearings as was used for ball bearings. For spherical roller bearings, as
shown in Fig. 21.82, the radii of curvature for the roller-inner-race contact can be written as

_d _ (r\
rax - 2' r«y ~ Ji I 2 J

_ de - d cos /3

"bx = 2 cos/3 ' r* = ~2/^

For the spherical roller bearing shown in Fig. 21.82 the radii of curvature for the roller-outer-race
contact can be written as

-* - f /Vi»•„ - 2, »•„ - J0 ^2J
de + d cos /3

rto = 2 cos/3 ' r"y = ~2f°r°y

Knowing the radii of curvature for the contact condition, we can write the curvature sum and dif-
ference directly from Eqs. (21.34) and (21.35). Furthermore, the radius-of-curvature expressions Rx

and Ry for spherical roller bearings can be written for the roller-inner-race contact as



d(dc - d cos /3)
Rx = ^ (21.89)

*x = ̂ T (21-90)

and for the roller-outer-race contact as

d(dc + d cos 13)
Rx = 2d (21.91)

Ry = ̂ 1 (21.92)

Kinematics
The relative motions of the separator, the balls or rollers, and the races of rolling-element bearings
are important to understanding their performance. The relative velocities in a ball bearing are some-
what more complex than those in roller bearings, the latter being analogous to the specialized case
of a zero- or fixed-value contact-angle ball bearing. For that reason the ball bearing is used as an
example here to develop approximate expressions for relative velocities. These are useful for rapid
but reasonably accurate calculation of elastohydrodynamic film thickness, which can be used with
surface roughnesses to calculate the lubrication life factor.

When a ball bearing operates at high speeds, the centrifugal force acting on the ball creates a
difference between the inner- and outer-race contact angles, as shown in Fig. 21.84, in order to
maintain force equilibrium on the ball. For the most general case of rolling and spinning at both
inner- and outer-race contacts, the rolling and spinning velocities of the ball are as shown in Fig.
21.85.

The equations for ball and separator angular velocity for all combinations of inner- and outer-
race rotation were developed by Jones.45 Without introducing additional relationships to describe the
elastohydrodynamic conditions at both ball-race contacts, however, the ball-spin-axis orientation
angle <j> cannot be obtained. As mentioned, this requires a long numerical solution except for the two
extreme cases of outer- or inner-race control. These are illustrated in Fig. 21.86.

Race control assumes that pure rolling occurs at the controlling race, with all of the ball spin
occurring at the other race contact. The orientation of the ball rotational axis is then easily deter-
minable from bearing geometry. Race control probably occurs only in dry bearings or dry-film-
lubricated bearings where Coulomb friction conditions exist in the ball-race contact ellipses. Pure
rolling will occur at the race contact with the higher magnitude spin-opposing moment. This is usually
the inner race at low speeds and the outer race at high speeds.

Fig. 21.84 Contact angles in a ball bearing at appreciable speeds. (From Ref. 6.)



Fig. 21.85 Angular velocities of a ball. (From Ref. 6.)

Fig. 21.86 Ball spin axis orientations for outer- and inner-race control. (From Ref. 6.) (a) Outer-
race control, (b) Inner-race control.



In oil-lubricated bearings in which elastohydrodynamic films exist in both ball-race contacts,
rolling with spin occurs at both contacts. Therefore, precise ball motions can only be determined
through use of a computer analysis. We can approximate the situation with a reasonable degree of
accuracy, however, by assuming that the ball rolling axis is normal to the line drawn through the
centers of the two ball-race contacts.This is shown in Fig. 21.80.

The angular velocity of the separator or ball set a)c about the shaft axis can be shown to be

(vt + V0)II
"< = dJ2

i f / dcos /3\ / dcos j3\~|

-2 K1 -Vr M1 + V)J (21-93)

where V1 and V0 are the linear velocities of the inner and outer contacts. The angular velocity of a
ball a)b about its own axis is

Vj ~ VQ^-tir
de\ / dcos j8\ / dcos(3\l=^ H1 ~VH° I1+V)J (2L94)

To calculate the velocities of the ball-race contacts, which are required for calculating elastohy-
drodynamic film thicknesses, it is convenient to use a coordinate system that rotates at o>c. This fixes
the ball-race contacts relative to the observer. In the rotating coordinate system the angular velocities
of the inner and outer races become

/cjf - a)0\/ d cos fi\^ = ^-», = (-5—^1 + -^—)
/X-O.A/ d cos p\

«~-«.-«*-(-2-)(i—4-)

The surface velocities entering the ball-inner-race contact for pure rolling are

(de - d cos /3\
uai = ubi = (-2 ^j «fr (21.95)

or

M^tt^^_^(1_^) (21.96)

and those at the ball-outer-race contact are

(de + d cos j8\
Uao = "bo = I 2 J M°r

or

de(co0 - W1.) / d2 cos2 j8\
U00 = ubo = -^

 l- (l ^j (21.97)

For a cylindrical roller bearing ft = 0° and Eqs. (21.92), (21.94), (21.96), and (21.97) become, if
d is roller diameter,



--H-1) *"°K)]

-M-. H)--K)]

,,,„,,.*«_->(, _g

4,((U0 - (U1)/ rf2\

"- = *» = —j—t1 - 5f J

For a tapered-roller bearing, equations directly analogous to those for a ball bearing can be used
if d is the average diameter of the tapered roller, de is the diameter at which the geometric center of
the rollers is located, and a> is the angle as shown in Fig. 21.87.

Static Load Distribution
Having defined a simple analytical expression for the deformation in terms of load in Section 21.3.1,
it is possible to consider how the bearing load is distributed among the rolling elements. Most rolling-
element bearing applications involve steady-state rotation of either the inner or outer race or both;
however, the speeds of rotation are usually not so great as to cause ball or roller centrifugal forces
or gyroscopic moments of significant magnitudes. In analyzing the loading distribution on the rolling
elements, it is usually satisfactory to ignore these effects in most applications. In this section the
load-deflection relationships for ball and roller bearings are given, along with radial and thrust load
distributions of statically loaded rolling elements.

Load-Deflection Relationships. For an elliptical contact the load-deflection relationship given
in Eq. (21.45) can be written as

F = K1J5P
12 (21.99)

where

/2/5/? V / 2

K,5 = ^TkE' (—j (21.100)

Similarly for a rectangular contact, Eq. (21.50) gives

F= K1S

where

Fig. 21.87 Simplified geometry for tapered-roller bearing. (From Ref. 6.)
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In general, then,

F = KJ& (21.102)

in which j = 1.5 for ball bearings and 1.0 for roller bearings. The total normal approach between
two races separated by a rolling element is the sum of the deformations under load between the
rolling element and both races. Therefore

8 = 80 + 5, (21.103)

where

r F T/J
5° = [W\ (2"O*)

r F T"'s> - Id (2L105)

Substituting Eqs. (21.103)-(21.105) into Eq. (21.102) gives

K. = I
j ([1/(Kj)0]W + [1/(Kj)1]W]J

Recall that (KJ)0 and (A^)1. are defined by Eq. (21.100) or (21.101) for an elliptical or rectangular
contact, respectively. From these equations we observe that (KJ)0 and (KJ)1 are functions of only the
geometry of the contact and the material properties. The radial and thrust load analyses are presented
in the following two sections and are directly applicable for radially loaded ball and roller bearings
and thrust-loaded ball bearings.

Radially Loaded Ball and Roller Bearings. A radially loaded rolling element with radial clear-
ance Pd is shown in Fig. 21.88. In the concentric position shown in Fig. 21.880, a uniform radial
clearance between the rolling element and the races of PJ 2 is evident. The application of a small
radial load to the shaft causes the inner race to move a distance PJI before contact is made between
a rolling element located on the load line and the inner and outer races. At any angle there will still
be a radial clearance c that, if Pd is small compared with the radius of the tracks, can be expressed
with adequate accuracy by

c = (\- cos ̂ ) /y 2

On the load line where ijs = O the clearance is zero, but when if/ = 90°, the clearance retains its
initial value of Pd/2.

The application of further load will cause elastic deformation of the balls and the elimination of
clearance around an arc 2if/c. If the interference or total elastic compression on the load is 5max, the
corresponding elastic compression of the ball 8^ along a radius at angle t/> to the load line will be
given by

8+ = (Smax cos ̂ - c) = (5max + Pd/2) cos iff - Pd/2

This assumes that the races are rigid. Now, it is clear from Fig. 21.88 that (5max + Pd/2) represents
the total relative radial displacement of the inner and outer races. Hence,

^= 8 cos ̂ f - Pdl2 (21.106)

The relationship between load and elastic compression along the radius at angle ^ to the load vector
is given by Eq. (21.102) as

F* = KM

Substituting Eq. (21.106) into this equation gives

F^ = Kj(S cos i/f - Pd/2)J



Fig. 21.88 Radially loaded rolling-element bearing. (From Ret. 10.) (a) Concentric arrangement.
(b) Initial contact, (c) Interference.

For static equilibrium the applied load must equal the sum of the components of the rolling-
element loads parallel to the direction of the applied load:

Fr = E *V cos <//

Therefore

( P \j

5 cos < A ~ Y) cosiA (21.107)

The angular extent of the bearing arc 2i/>, in which the rolling elements are loaded is obtained by
setting the root expression in Eq. (21.107) equal to zero and solving for if/:

*-«•-(§)

The summation in Eq. (21.107) applies only to the angular extent of the loaded region. This
equation can be written for a roller bearing as

/ Pd \ nK,8
Fr- U -r| sin ̂  )—L- (21.108)

\ Zo i LTT

and similarly in integral form for a ball bearing as

/>// p \3 / 2

Fr = -Kl58
m I cos (A - I cos if/d ty

TT ' JO \ 28/



The integral in the equation can be reduced to a standard elliptic integral by the hypergeometric
series and the beta function. If the integral is numerically evaluated directly, the following approxi-
mate expression is derived:

n~,-*r~ .^-™ (H^fl"-,}
This approximate expression fits the exact numerical solution to within ± 2% for a complete range
of Pd/2d.

The load carried by the most heavily loaded ball is obtained by substituting if/ = 0° in Eq. (21.107)
and dropping the summation sign:

F -*Wi ^YFmm - Kf \\ - -j

Dividing the maximum ball load [Eq. (21.109)] by the total radial load for a roller bearing [Eq.
(21.108)] gives

= [», - (P,/2fi) sin ^] nF^
27r(l - PJIS) * ' '

and similarly for a ball bearing

^ = ^ax (21.110)LJ

where

_ TT(I ~ Pd/28)3/2

Z ~ JT /1 - / y 2 5 \ 2 T ' 2 T (21.111)
2-491 {i1 + (-123-) J -1J

For roller bearings when the diametral clearance Pd is zero, Eq. (21.105) gives

Fr = ̂ p (21.112)

For ball bearings when the diametral clearance Pd is zero, the value of Z in Eq. (21.110) becomes
4.37. This is the value derived by Stribeck46 for ball bearings of zero diametral clearance. The
approach used by Stribeck was to evaluate the finite summation for various numbers of balls. He
then derived the celebrated Stribeck equation for static load-carrying capacity by writing the more
conservative value of 5 for the theoretical value of 4.37:

JV = ^y= (21-113)

In using Eq. (21.113), it should be remembered that Z was considered to be a constant and that the
effects of clearance and applied load on load distribution were not taken into account. However, these
effects were considered in obtaining Eq. (21.110).

Thrust-Loaded Ball Bearings. The static-thrust-load capacity of a ball bearing may be defined
as the maximum thrust load that the bearing can endure before the contact ellipse approaches a race
shoulder, as shown in Fig. 21.89, or the load at which the allowable mean compressive stress is
reached, whichever is smaller. Both the limiting shoulder height and the mean compressive stress
must be calculated to find the static-thrust-load capacity.

The contact ellipse in a bearing race under a load is shown in Fig. 21.89. Each ball is subjected
to an identical thrust component F1In, where Ft is the total thrust load. The initial contact angle
before the application of a thrust load is denoted by /3f. Under load, the normal ball thrust load F
acts at the contact angle ft and is written as

Ft
F = -sin/3 (21.114)



Fig. 21.89 Contact ellipse in bearing race. (From Ref. 10.)

A cross section through an angular-contact bearing under a thrust load Ft is shown in Fig. 21.90.
From this figure the contact angle after the thrust load has been applied can be written as

(D - Pd/2\
^ ̂ 1UrH (2L115)

The initial contact angle was given in Eq. (21.74). Using that equation and rearranging terms in Eq.
(21.115) give, solely from geometry (Fig. 21.90),

Fig. 21.90 Angular-contact ball bearing under thrust load. (From Ref. 10.)



/COS (3f \
8 = D[ — - 1 = S0 + 8tV cos/3 /

= [JL]1" \JL]1/J

L(K7)J + №)J

-'/^r ̂ n
/IT 4.553 i2 / 3 r 4.537 ]2/3i

^VlU^H n^^wJ I (2U16)

/cos ft \ 3 / 2

F = Kf>3/2 — - 1 (21.117)
^ V cos/3 /

where

/ R f V / 2

K1, = TTkE' (̂ -J (21.118)

and k, S, and 5 are given by Eqs. (21.39), (21.40), and (21.41), respectively.
From Eqs. (21.114) and (21.117), we can write

-S- = F
n sin ft (21.119)

Ft /cos ft: \ 3 / 2

^ = s i n / 3UsT-V
This equation can be solved numerically by the Newton-Raphson method. The iterative equation to
be satisfied is

F, /cos p. V'2

;s^-5^UsT-1J
P-P- /co. ft' V / 2 3 /co.fr V» (2U20)005K^'1) ^^^^K^"1)

In this equation convergence is satisfied when ft' — ft becomes essentially zero.
When a thrust load is applied, the shoulder height is limited to the distance by which the

pressure-contact ellipse can approach the shoulder. As long as the following inequality is satisfied,
the pressure-contact ellipse will not exceed the shoulder height limit:

e> p + Sin-^g)

From Fig. 21.79 and Eq. (21.68), the angle used to define the shoulder height 6 can be written as

—"(Sr)
From Fig. 21.77 the axial deflection 8t corresponding to a thrust load can be written as

8t = (D + 8) sin ft - D sin ftf (21.121)

Substituting Eq. (21.116) into Eq. (21.121) gives

^ D sin(j8 - ftf}

' cos ft

Having determined ft from Eq. (21.120) and ftf from Eq. (21.103), we can easily evaluate the rela-
tionship for 8t.



Preloading. The use of angular-contact bearings as duplex pairs preloaded against each other
is discussed in the first subsection in Section 21.3.6. As shown in Table 21.10 duplex bearing pairs
are used in either back-to-back or face-to-face arrangements. Such bearings are usually preloaded
against each other by providing what is called "stickout" in the manufacture of the bearing. This is
illustrated in Fig. 21.91 for a bearing pair used in a back-to-back arrangement. The magnitude of the
stickout and the bearing design determine the level of preload on each bearing when the bearings
are clamped together as in Fig. 21.91. The magnitude of preload and the load-deflection character-
istics for a given bearing pair can be calculated by using Eqs. (21.74), (21.99), (21.114), and
(21.116H21.119).

The relationship of initial preload, system load, and final load for bearings a and b is shown in
Fig. 21.92. The load-deflection curve follows the relationship 8 = KF2'3. When a system thrust load
Ft is imposed on the bearing pairs, the magnitude of load on bearing b increases while that on bearing
a decreases until the difference equals the system load. The physical situation demands that the
change in each bearing deflection be the same (Aa = AZ? in Fig. 21.92). The increments in bearing
load, however, are not the same. This is important because it always requires a system thrust load
far greater than twice the preload before one bearing becomes unloaded. Prevention of bearing un-
loading, which can result in skidding and early failure, is an objective of preloading.

Rolling Bearing Fatigue Life

Contact Fatigue Theory. Rolling fatigue is a material failure caused by the application of re-
peated stresses to a small volume of material. It is a unique failure type. It is essentially a process
of seeking out the weakest point at which the first failure will occur. A typical spall is shown in Fig.
21.93. We can surmise that on a microscale there will be a wide dispersion in material strength or
resistance to fatigue because of inhomogeneities in the material. Because bearing materials are com-
plex alloys, we would not expect them to be homogeneous nor equally resistant to failure at all
points. Therefore, the fatigue process can be expected to be one in which a group of supposedly
identical specimens exhibit wide variations in failure time when stressed in the same way. For this
reason it is necessary to treat the fatigue process statistically.

To be able to predict how long a typical bearing will run under a specific load, we must have the
following two essential pieces of information:

1. An accurate, quantitative estimate of the life dispersion or scatter.

Fig. 21.91 Angular-contact bearings in back-to-back arrangement, shown individually as man-
ufactured and as mounted with preload. (From Ref. 6.) (a) Separated, (b) Mounted and

preloaded.



Fig. 21.92 Thrust-load-axial-deflection curve for a typical ball bearing. (From Ref. 6.)

2. The life at a given survival rate or reliability level. This translates into an expression for the
"load capacity," or the ability of the bearing to endure a given load for a stipulated number
of stress cycles or revolutions. If a group of supposedly identical bearings is tested at a
specific load and speed, there will be a wide scatter in bearing lives, as shown in Fig. 21.94.

The Weibull Distribution. Weibull47 postulates that the fatigue lives of a homogeneous group
of rolling-element bearings are dispersed according to the following relation:

In ^ = C1 In LIA
i3

Fig. 21.93 Typical fatigue spall.



Fig. 21.94 Distribution of bearing fatigue failures. (From Ref. 6.)

where S is the probability of survival, L is the fatigue life, and ^1 and A are constants. The Weibull
distribution results from a statistical theory of strength based on probability theory, where the de-
pendence of strength on volume is explained by the dispersion in material strength. This is the
"weakest link" theory.

Consider a volume being stressed that is broken up into m similar volumes:

S 1 =I-M 1 S 2 = I - M 2 S 3 =I -M 3 - - • S m = l - M m

The M's represent the probability of failure and the S's represent the probability of survival. For the
entire volume we can write

S1= ? .9 • ^ <?J - O 1 S2 ^3 ^m

Then

1 - M = (1 - M1)(I - M2)(I - M 3 ) - - - ( I - MJ

1 - M = f[ (1 - M1)
Z = I

s = n (i - M1)i=l

The probability of a crack starting in the zth volume is

M1 = f (x)vt

where f(x) is a function of the stress level, the number of stress cycles, and the depth into the material
where the maximum stress occurs and vt is the elementary volume. Therefore,



S = Yl [1 - Kx)V1]
I=I

In S = 2 In[I - /(X)V1]
/=i

Now if /(Jc)U1. <^ 1, then In[I - /(Jt)U1-] - -f(x)vt and

In S = -2 /Wu,
1=1

Let U1- —> O; then

E -/Wi;,- = [ W du = /WV
1=1 J

Lundberg and Palmgren48 assume that f(x) could be expressed as a power function of shear stress
T0, number of stress cycles, J, and depth to the maximum shear stress Z0:

T0-' 7
C2

/W - -7^ (21.122)
^o

They also choose as the stressed volume

V = DyZJv

Then

TgJ^
ln5 ZJT-

or

1 rg/^D^
lnS-^^~

For a specific bearing and load (e.g., stress) T0, D3,, /„, and Z0 are all constant, so that

In - « /C2

O

Designating 7 as life L in stress cycles gives

i l (LYto5"U)
or

I n I n ^ = C2In ( j ) (21.123)
S \A/

This is the Weibull distribution, which relates probability of survival and life. It has two principal
functions. First, bearing fatigue lives plot as a straight line on Weibull coordinates (log log vs log),
so that the life at any reliability level can be determined. Of most interest are the L10 life (S = 0.9)
and the L50 life (S = 0.5). Bearing load ratings are based on the L10 life. Second, Eq. (21.123) can
be used to determine what the L10 life must be to obtain a required life at any reliability level. The
L10 life is calculated, from the load on the bearing and the bearing dynamic capacity or load rating
given in manufacturers' catalogs and engineering journals, by using the equation



'-$•
where C = basic dynamic capacity or load rating

Fe = equivalent bearing load
m = 3 for elliptical contacts and 10/3 for rectangular contacts

A typical Weibull plot is shown in Fig. 21.95.

Lundberg-Palmgren Theory. The Lundberg-Palmgren theory, on which bearing ratings are
based, is expressed by Eq. (21.122). The exponents in this equation are determined experimentally
from the dispersion of bearing lives and the dependence of life on load, geometry, and bearing size.
As a standard of reference, all bearing load ratings are expressed in terms of the specific dynamic
capacity C, which, by definition, is the load that a bearing can carry for 106 inner-race revolutions
with a 90% chance of survival.

Factors on which specific dynamic capacity and bearing life depend are:

1. Size of rolling element.
2. Number of rolling elements per row.
3. Number of rows of rolling elements.
4. Conformity between rolling elements and races.
5. Contact angle under load.
6. Material properties.
7. Lubricant properties.
8. Operating temperature.
9. Operating speed.

Only factors 1-5 are incorporated in bearing dynamic capacities developed from the Lundberg-
Palmgren theory. The remaining factors must be taken into account in the life adjustment factors
discussed later.

The formulas for specific dynamic capacity as developed by Lundberg and Palmgren48-49 are as
follows:

For radial ball bearings with d < 25 mm,

Fig. 21.95 Typical Weibull plot of bearing fatigue failures. (From Ref. 10.)



C =/^COS/^V* (^)''8

where d = diameter of rolling element, m
/ = number of rows of rolling elements
n = number of rolling elements per row
(3 = contact angle

fc = coefficient dependent on material and bearing type

For radial ball bearings with d > 25 mm,

C = W/cos0)o.V'3(^r

For radial roller bearings,

( . \1-07/ I \0.78

002MJ (00*4)

where lt is roller length in meters.
For thrust ball bearings with (3 =£ 90°,

C = fc(i cos /3)°-7(tan (3)n™ (^^j

For thrust roller bearings with /3 * 90°,

/ /, \°-78

C = fc(i cos /3)°-78(tan /3)rc3/4 —^-
yu.uzjHy

For thrust ball bearings with /3 = 90°,

( j \ 1.8

1
0.0254/

For thrust roller bearings with (3 = 90°,

/ j \ 1-07 / / \0.78

r _ f ,0.78^3/4 I d } I l< }
L~*cl H V0.0254/ 10.0254^

For ordinary bearing steels such as SAE 52100 with mineral oil lubrication, fc can be evaluated by
using Tables 21.18 and 21.19, but a more convenient metjiod is to use tabulated values from the
most recent Antifriction Bearing Manufacturers Association (AFBMA) documents on dynamic load
ratings and life.50 The value of C is calculated or determined from bearing manufacturers' catalogs.
The equivalent load Fe can be calculated from the equation

Fe = XFr + YFr,

Factors X and Y are given in bearing manufacturers' catalogs for specific bearings.
In addition to specific dynamic capacity C, every bearing has a specific static capacity, usually

designated as C0. Specific static capacity is defined as the load that, under static conditions, will
result in a permanent deformation of 0.0001 times the rolling-element diameter. For some bearings
C0 is less than C, so it is important to avoid exposing a bearing to a static load that exceeds C0.
Values of C0 are also given in bearing manufacturers' catalogs.

The AFBMA Method. Shortly after publication of the Lundberg-Palmgren theory, the AFBMA
began efforts to standardize methods for establishing bearing load ratings and making life predictions.
Standardized methods of establishing load ratings for ball bearings51 and roller bearings52 were de-
vised, based essentially on the Lundberg-Palmgren theory. These early standards are published in
their entirety in Jones.45 In recent years significant advances have been made in rolling-element
bearing material quality and in our understanding of the role of lubrication in bearing life through
the development of elastohydrodynamic theory. Therefore the original AFBMA standards in



Table 21.18 Capacity Formulas for Rectangular and Elliptic Contacts3 (From Ref. 6)
Function Elliptical Contact of Ball Bearings Rectangular Contact of Roller Bearings

c /Jy0W73J1-8 fcfai
7/9N3/4d29/27lll9

/ d. \0'41

fc 8cflf2 \7~^d) 8cflf2

( \10/8~l-0.8 [~ / \9 /2~| -2/9

cj \ Ht) \

i I r \WQ - vTl
 f W

9
CjC0 /3 — — M T /

Id0(dt - d)] \ltj

Radial Thrust Radial Thrust

13 * 90° /3 = 90° /3 * 90° /3 = 90°

d cos (3 d d cos /3 d
7 de ^ de J.

fa (cos fi)07 (cos j6)07 tan ft I (cos /3)7/9 (cos j8)7/9 tan /3 1

J1 3.7-4.1 6-10 18-25 36-60

-yO.SQ _ y\\39 I -y2/9n - -y)29/27 I
f ' ^1 ^ V0.3 ' V1 " -,2/9
72 (1 + Y)"3 1 (1 + T)1"

/3 104/4 I /4 I 1 ~Tl4/4 I /4 I 1

/i - yy-" /i - yy^
/4 I I l + YJ I \l + y)

"Units in kg and mm.

AFBMA51'52 have been updated with life adjustment factors. These factors have been incorporated
into ISO,50 which is discussed in the following section.

Life Adjustment Factors. A comprehensive study of the factors affecting the fatigue life of
bearings, which were not taken account of in the Lundberg-Palmgren theory, is reported in Bamberger
et al.53 In that reference it was assumed that the various environmental or bearing design factors are
multiplicative in their effect on bearing life. The following equation results:

LA = (D)(E)(F)(G)(H)L10

or

LA = (D)(E)(F)(G)(H)(C/Fer

where D = materials factor
E = metallurgical processing factor
F = lubrication factor
G = speed effect factor
H = misalignment factor
Fe = bearing equivalent load
m = load-life exponent; either 3 for ball bearings or 10/3 for roller bearings

Factors, D, E, and F are briefly reviewed here. The reader is referred to Bamberger et al.53 for a
complete discussion of all five life adjustment factors.

Materials Factors D and E. For over a century, AISI 52100 steel has been the predominant
material for rolling-element bearings. In fact, the basic dynamic capacity as defined by AFBMA in
1949 is based on an air-melted 52100 steel, hardened to at least Rockwell C 58. Since that time,
better control of air-melting processes and the introduction of vacuum remelting processes have
resulted in more homogeneous steels with fewer impurities. Such steels have extended rolling-element
bearing fatigue lives to several times the AFBMA or catalog life. Life improvements of 3-8 times
are not uncommon. Other steel compositions, such as AISI M-I and AISI M-50, chosen for their



Table 21.19 Capacity Formulas for Mixed Rectangular and Elliptical Contacts3

(From Ref. 6)
Function Radial Thrust Bearing Radial Thrust Bearing

Bearing I Bearing I
I (3 * 90° 1 / 3 - 9 0 ° I j8 i= 90° /3 = 90°

Inner Race Outer Race

d cos /3 d d cos /3 d
y d. I 7. d. I 7.

Rectangular Contact ct Elliptical Contact C0

( IR r \°'41

— —^ two**
JL/ T0 — K/

fa (cos j3)7/9 (cos /3)7/9 tan ft \ 1 (cos /3)°-7 (cos /3)07 tan /3 | 1

/! 18-25 36-60 3.5-3.9 6-10

" 72/9(l - 7)29/27 I ~ 7 Q - 3 ( 1 + y)1-39 I ^T"
/2 (1 + r)1/3 I 7 d - y)1/3 I 7

Point Contact C1 Line Contact C0

/2R r Y0'41

^i or C0 /J2/, ̂ - ̂ -f-^J WW* MJJ1WWVIl*

fa (cos a)07 (cos a)07 tan a 1 (cos a)7/9 (cos a)7/9 tan a 1

/! 3.7-4.1 6-10 15-22 36-60

7°-3(l ~ y)1-39 I ~ y 2 / 9 ( 1 + y)29/27 I ~^~

12 I d + y)1/3 I r I d - y)1/3 I 7

^C - C1 [1 + (C2VC0)
4]174 units in kg and mm.

higher-temperature capabilities and resistance to corrosion, also have shown greater resistance to
fatigue pitting when vacuum melting techniques are employed. Case-hardened materials, such as
AISI 4620, AISI 4118, and AISI 8620, used primarily for roller bearings, have the advantage of a
tough, ductile steel core with a hard, fatigue-resistant surface.

The recommended D factors for various alloys processed by air melting are shown in Table 21.20.
Insufficient definitive life data were found for case-hardened materials to recommended D factors for

Table 21.20 Material
Factor for Through-
Hardened Bearing
Materials3 (From Ref. 53)
Material D-Factor
52100 2.0
M-I .6
M-2 .6
M-IO 2.0
M-50 2.0
T-I .6
Halmo 2.0
M-42 .2
WB 49 .6
44OC 0.6-0.8

"Air-melted materials assumed.



them. It is recommended that the user refer to the bearing manufacturer for the choice of a specific
case-hardened material.

The metallurgical processing variables considered in the development of the E factor included
melting practice (air and vacuum melting) and metal working (thermomechanical working). Ther-
momechanical working of M-50 has also been shown to result in improved life, but it is costly and
still not fully developed as a processing technique. Bamberger et al.53 recommended an E factor of
3 for consumable-electrode-vacuum-melted materials.

The translation of factors into a standard50 is discussed later.

Lubrication Factor F. Until approximately 1960 the role of the lubricant between surfaces in
rolling contact was not fully appreciated. Metal-to-metal contact was presumed to occur in all ap-
plications with attendant required boundary lubrication. The development of elastohydrodynamic
lubrication theory showed that lubricant films of thickness of the order of microinches and tens of
microinches occur in rolling contact. Since surface finishes are of the same order of magnitude as
the lubricant film thicknesses, the significance of rolling-element bearing surface roughnesses to
bearing performance became apparent. Tallian54 first reported on the importance on bearing life of
the ratio of elastohydrodynamic lubrication film thickness to surface roughness. Figure 21.96 shows
life as a percentage of calculated L10 life as a function of A, where

. _ "min

" (A* + A?)1'2

Figure 21.97, from Bamberger et al.,53 presents a curve of the recommended F factor as a function
of the A parameter. A mean of the curves presented in Tallian54 for ball bearings and in Skurka55 for
roller bearings is recommended for use. A formula for calculating the minimum film thickness /zmin

in the hard-EHL regime is given in Eq. (21.57).
The results of Bamberger et al.53 have not been fully accepted into the current AFBMA standard

represented by ISO.50 The standard presents the following:

1. Life and dynamic load rating formulas for radial and thrust ball bearings and radial and thrust
roller bearings.

Fig. 21.96 Chart for determining group fatigue life L10. (From Ref. 54.)



Fig. 21.97 Chart for determining lubrication-life correction factor. (From Ref. 53.)

2. Tables of fc for all cases.
3. Tables of X and Y factors for calculating equivalent loads.
4. Load rating formulas for multirow bearings.
5. Life correction factors for high-reliability levels ^1, materials a2, and lubrication or operating

conditions a3.

Procedures for calculating a2 and a3 are less than definitive, reflecting the need for additional research,
life data, and operating experience.

Applications
In this section two applications of the film thickness equations developed throughout this chapter are
presented to illustrate how the fluid-film lubrication conditions in machine elements can be analyzed.
Specifically, a typical roller bearing and a typical ball bearing problem are considered.

Cylindrical-Roller-Bearing Problem. The equations for elastohydrodynamic film thickness that
have been developed earlier relate primarily to elliptical contacts, but they are sufficiently general to
allow them to be used with adequate accuracy in line-contact problems, as would be found in a
cylindrical roller bearing. Therefore, the minimum elastohydrodynamic film thicknesses on the inner
and outer races of a cylindrical roller bearing with the following dimensions are calculated:

Inner-race diameter, di9 mm (m) 65 (0.064)
Outer-race diameter, d0, mm (m) 96 (0.096)
Diameter of cylindrical rollers, d, mm (m) 16 (0.016)
Axial length of cylindrical rollers, /, mm (m) 16 (0.016)
Number of rollers in complete bearing, n 9

A bearing of this kind might well experience the following operating conditions:



Radial load, Fr, N 10,800
Inner-race angular velocity, <w,, rad/sec 524
Outer-race angular velocity, W0, rad/sec O
Lubricant viscosity at atmospheric pressure at

operating temperature of bearings, j\0,
N sec/m2 0.01

Viscosity-pressure coefficient, £ m2/N 2.2 X 10~8

Modulus of elasticity for both rollers and races,
E, N/m2 2.075 X 1011

Poisson's ratio, v 0.3

Calculation. From Eq. (21.124), the most heavily loaded roller can be expressed as

F^ = £- ̂ » = 4800 N (21.124)

Therefore, the radial load per unit length on the most heavily loaded roller is

F^=S^=°-3MN/m (21-125)

From Fig. 21.98 we can write the radii of curvature as

r^ = 0.008 m, ray = oo

rbx, = 0.032 m, rby, = oo

rbx,0 = 0.048 m, T^ = oo

Then

1 1 1 = 5
RXti ~ 0.008 + 0.032 ~ 0.032

giving R^ = 0.0064 m,

J_ = _1 L_ =
 5

 (2} n^
Rx 0 0.008 0.048 0.048 ^ ' ;

giving Rx 0 = 0.0096 m, and

Fig. 21.98 Roller bearing example: ray = rbyj = rbyo = oo.



TT- = — = - + - = O (21.127)
R R oo ooJV' y.o

giving Ry z = /^0 - oo.
From the input information, the effective modulus of elasticity can be written as

/1 - v2 1 - vl\
E' =2 a + = 2.28 X 1011 N/m2 (21.128)

\ Ea Eb /

For pure rolling, the surface velocity u relative to the lubricated conjunctions for a cylindrical
roller is

d2 - d2

u = leu, - O)J '^ (21.129)

where de is the pitch diameter and d is the roller diameter.

d0 + dt 0.096 + 0.064
de = ̂ Y^ = 2

 = °-08 m (21.130)

Hence,

M = 0^ ~A AQ6 I524 - 0I = 10-061 m/sec (21.131)4 X 0.Oo

The dimensionless speed, materials, and load parameters for the inner- and outer-race conjunctions
thus become

"•-^-dTiS™-""*^'
G1. = SE' = 5016 (21.133)

F 4800

"' - TO? - 2.28 X 10" X MOW ' 5-14° X '°" <2U34)

•"•-^:-sSSs-««""«- -
G0 - g£' - 5016 (21.136)

W» = ̂  = 2.28 X 10-- °X° (0.009:6f = 2^ X 10"4 (2U37)

The appropriate elliptical-contact elastohydrodynamic film thickness equation for a fully flooded
conjunction is developed in Section 21.3.3 and recorded as Eq. (21.138):

#m.n = -^- = 3.63 £/°.68G0.49W-0.073(1 _ £ -0.68*) (21.138)

/Ix

For a roller bearing, A: = oo and this equation reduces to

//min = 3.63f/°-68G0-49W~a073

The dimensionless film thickness for the roller-inner-race conjunction is

#min = — = 3.63 x 1.231 x 10-7 x 65.04 x 1.783 - 50.5 x 10~6

**,*

and hence



/zmin = 0.0064 X 50.5 X 10~6 - 0.32 /un

The dimensionless film thickness for the roller-outer-race conjunction is

#min = — = 3.63 X 9.343 X 10~8 X 65.04 X 1.844 - 40.7 X 10~6

Rx*

and hence

/Z011n - 0.0096 x 40.7 X 10~6 - 0.39 /nn

It is clear from these calculations that the smaller minimum film thickness in the bearing occurs at
the roller-inner-race conjunction, where the geometrical conformity is less favorable. It was found
that if the ratio of minimum film thickness to composite surface roughness is greater than 3, an
adequate elastohydrodynamic film is maintained. This implies that a composite surface roughness of
< 0.1 fjum is needed to ensure that an elastohydrodynamic film is maintained.

Radial Ball Bearing Problem. Consider a single-row, radial, deep-groove ball bearing with the
following dimensions:

Inner-race diameter, d{, m 0.052291
Outer-race diameter, d0, m 0.077706
Ball diameter, d, m 0.012700
Number of balls in complete bearing, n 9
Inner-groove radius, r-, m 0.006604
Outer-groove radius, r0, m 0.006604
Contact angle, /3, deg O
rms surface finish of balls, A f r , /mi 0.0625
rms surface finish of races, A0, /tm 0.175

A bearing of this kind might well experience the following operating conditions:

Radial load, Fr, N 8900
Inner-race angular velocity, o>z, rad/sec 400
Outer-race angular velocity, u>0, rad/sec O
Lubricant viscosity at atmospheric pressure

and effective operating temperature of
bearing, Tj0, N sec/m2 0.04

Viscosity-pressure coefficient, £, m2/N 2.3 X 10~8

Modulus of elasticity for both balls and races,
E9 N/m2 2 X 1011

Poisson's ratio for both balls and races, v 0.3

The essential features of the geometry of the inner and outer conjunctions (Figs. 21.75 and 21.76)
can be ascertained as follows:

Pitch diameter [Eq. (21.68)]:

de = 0.5(4 + 4) = 0.065 m

Diametral clearance [Eq. (21.69)]:

Pd = d0 - J, -2d= 1.5 X IQ-5 m

Race conformity [Eq. (21.70)]:

/, = /.-5-0.52

Equivalent radius [Eq. (21.85)]:



d(de - d)
R

xi = -Hl—- = 0.00511 m2de

Equivalent radius [Eq. (21.87)]:

d(de + d)
RXO = 2d = a°°759 m

Equivalent radius [Eq. (21.86)]:

fid
Ry, - ̂ TJ = 0-165 m

Equivalent radius [Eq. (21.88)]:

Ry,o = ̂ p^ - 0.165 m

The curvature sum

j = J- + ̂ - = 201.76 (21.139)
î Kx,i Ry,i

gives Rt = 4.956 X 10~3 m, and the curvature sum

£- - ̂ - + ̂ - - 137.81 (21.140)

gives R0 = 7.256 X 10~3 m. Also, a,. - Ryti/RXti = 32.35 and a0 = Ry,0/Rx,0 = 21.74.
The nature of the Hertzian contact conditions can now be assessed.
Ellipticity parameters:

k. = «2/7, = 942, ko = a2/K = 7 09 (21.141)

Elliptic integrals:

77 1
'"-1

S, = 1 + — = 1.0188, S0 = 1 + — - 1.0278 (21.142)
ai ao

yt = ~ + q In at = 3.6205, 50 - ̂  + ^ In «0 - 3.3823 (21.143)

The effective elastic modulus E' is given by

(I -^l 1 - vl\
E = 2 ^ + - 1 = 2.198 X 1011 N/m2

\ ^a ^ /

To determine the load carried by the most heavily loaded ball in the bearing, it is necessary to
adopt an iterative procedure based on the calculation of local static compression and the analysis
presented in the fourth subsection in Section 21.3.6. Stribeck46 found that the value of Z was about
4.37 in the expression

_ ZFrFmaX = ~

where Fmax = load on most heavily loaded ball
Fr = radial load on bearing
n = number of balls

However, it is customary to adopt a value of Z = 5 in simple calculations in order to produce a
conservative design, and this value will be used to begin the iterative procedure.



Stage L Assume Z = 5. Then

^max = -~ = \ X 8900 - 4944 N (21.144)

The maximum local elastic compression is

r / 9 WF X2T'3
si = yi\\ ~ -f^7 = 2-902 x 10~5 m

L\2W\^^7 J (21.145)
r/ Q WF \2~i1 / 3

d* = *'\ (^T H-Tfr) -2.877 X 10-mLV2^A/ V irk0E'j J

The sum of the local compressions on the inner and outer races is

g = 8. + 8o = 5.799 x 10~5 m

A better value for Z can now be obtained from

TT(I - Pd/2d)3/2

Z= TT /1 - Prf/25\211/2 T
2'491 Ii1 + (-T^) J -1}

since Pd/28 = (1.5 X lQ-5)/(5.779 X IO'5) - 0.1298. Thus

Z = 4.551

Stage 2.

Z = 4.551

^max = (4-551 X 8900)79 - 4500 N

8t = 2.725 X 10~5 m, 80 = 2.702 X 10~5 m

8 = 5.427 X 10~5 m
p
-^ = 0.1382
28

Thus

Z - 4.565

Stage 3.

Z = 4.565
4.565 x 8900

Fmax = = 4514 N
9

5, - 2.731 X IQ-5 m, 80 = 2.708 X 10~5 m

8 = 5.439 X IQ-5 m

-^ - 0.1379
28

and hence

Z - 4.564

This value is very close to the previous value from stage 2 of 4.565, and a further iteration confirms
its accuracy.

Stage 4.



Z - 4.564

4.564 X 8900
^max = 9 = 4513 N

S1. = 2.731 X 10~5 m, S0 = 2.707 X 10~5 m

8 = 5.438 X IQ-5 m

S - °-1379

and hence

Z - 4.564

The load on the most heavily loaded ball is thus 4513 N.

Elastohydrodynamic Minimum Film Thickness. For pure rolling

d2 - d2

u = \a)0- a>,\ -Z—— = 6.252 m/sec (21.146)
4^e

The dimensionless speed, materials, and load parameters for the inner- and outer-race conjunctions
thus become

U-^-- Q-04 X 6'252 - 2 227 X 10-° (21 147)
Ul ERx, 2.198 X 10" X 5.11 X 10-3 " 2'22? ™ (2L147)

G1 = fE' = 2.3 X 10~8 X 2.198 X 10" = 5055 (21.148)

W' ' F^b = 2.198 X 10"T(WxIO-* - 7'863 X 10'4 (2U49)

U ~ -^- - °-04 X 6-252 - 1 499 x 10-'» (21 150)
U° ~ ERV ~ 2.198 X 10» X 7.59 X 10~3 ~ L4W 10 (2U50)

G0 = QS = 2.3 X IQ-8 X 2.198 X 10" = 5055 (21.151)

W'~ ̂  = 2.198 x 10"T(W x 10-^ - 3'564 X 10"4 (2U52)

The dimensionless minimum elastohydrodynamic film thickness in a fully flooded elliptical contact
is given by

#min = — = 3.63t/0-68G0-49W-°-073(l - g'0-68*) (21.153)R

x

For the ball-inner-race conjunction it is

(#minX = 3.63 X 2.732 x 10~7 x 65.29 x 1.685 x 0.9983 (21.154)

- 1.09 X 10-4

Thus

(/*minX- - 1.09 X IQ-4 Rx^ = 0.557 /mi

The lubrication factor A discussed in the fifth subsection of Section 21.3.6 was found to play a
significant role in determining the fatigue life of rolling-element bearings. In this case

№minX _ 0.557 X 10~6

AZ = (AJ + A?)1'2 = [(0.175)2 + (0.06225)2]172 X 10~6 = 3'°° (21-155)

Ball-outer-race conjunction is given by



(Hmin)0 = ̂ ^ = 3.63£/°-68G°-49W-°-073 (1 - e-°-6*k°)
R

X,o

= 3.63 X 2.087 X IQ-7 X 65.29 X 1.785 X 0.9919 (21.156)
- 0.876 x 10~4

Thus

(hmin)0 = 0.876 X 10-4 R^ = 0.665 Aim

In this case, the lubrication factor A is given by

A° = [(0.175)2 + (0.0625)*r x 10-' = 3'58 (2U57)

Once again, it is evident that the smaller minimum film thickness occurs between the most heavily
loaded ball and the inner race. However, in this case the minimum elastohydrodynamic film thickness
is about three times the composite surface roughness, and the bearing lubrication can be deemed to
be entirely satisfactory. Indeed, it is clear from Fig. 21.97 that very little improvement in the lubri-
cation factor F and thus in the fatigue life of the bearing could be achieved by further improving the
minimum film thickness and hence A.

21.4 BOUNDARYLUBRICATION
If the pressures in fluid-film-lubricated machine elements are too high, the running speeds are too
low, or the surface roughness is too great, penetration of the lubricant film will occur. Contact will
take place between asperities, leading to a rise in friction and wear rate. Figure 21.99 (obtained from
Bowden and Tabor56) shows the behavior of the coefficient of friction in the different lubrication
regimes. It is to be noted in this figure that in boundary lubrication, although the friction is much
higher than in the hydrodynamic regime, it is still much lower than for unlubricated surfaces. As the
running conditions are made more severe, the amount of lubricant breakdown increases, until the
system scores or seizes so badly that the machine element can no longer operate successfully.

Figure 21.100 shows the wear rate in the different lubrication regimes as determined by the
operating load. In the hydrodynamic and elastohydrodynamic lubrication regimes, since there is no
asperity contact, there is little or no wear. In the boundary lubrication regime the degree of asperity
interaction and wear rate increases as the load increases. The transition from boundary lubrication to
an unlubricated condition is marked by a drastic change in wear rate. Machine elements cannot
operate successfully in the unlubricated region. Together Figs. 21.99 and 21.100 show that both
friction and wear can be greatly decreased by providing a boundary lubricant to unlubricated surfaces.

Understanding boundary lubrication depends first on recognizing that bearing surfaces have as-
perities that are large compared with molecular dimensions. On the smoothest machined surfaces
these asperities may be 25 nm (0.025 /nn) high; on rougher surfaces they may be ten to several
hundred times higher. Figure 21.101 illustrates typical surface roughness as a random distribution of

Fig. 21.99 Schematic drawing showing how type of lubrication shifts from hydrodynamic to
elastohydrodynamic to boundary lubrication as the severity of running conditions is increased.

(From Ref. 56.)
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